Fairness Metrics Toolbox for Regression
(aiverify.stock.fairness-metrics-toolbox-for-regression) [source]
Description
This plugin computes and displays a list of fairness metrics to measure how correctly your regression model predicts among the given set of sensitive features.
Plugin Content
- Algorithms
| Name | Description |
|---|---|
| Fairness Metrics Toolbox for Regression | The algorithm computes a list of fairness metrics to measure how correct your model predicts among the given set of sensitive features. |
- Widgets
| Name | Description |
|---|---|
| Introduction | To provide an introduction to the Fairness Metric Toolbox for Regression |
| Understanding Bar Chart | To guide your users on reading the generated bar chart |
| Bar Chart (MAE) | To generate the bar chart to show the mean absolute error parity between the subgroups |
| Bar Chart (MSE) | To generate the bar chart to show the mean square error parity between the subgroups |
| Bar Chart (R2) | To generate the bar chart to show the r2 score parity between the subgroups |
| Interpretation (MAE) | To interpret the mean absolute error parity results |
| Interpretation (MSE) | To interpret the mean square error parity results |
| Interpretation (R2) | To interpret the r2 score parity results |
| Recommendation | To provide a recommendation for fairness testing for regression models |
| Table of Definitions | To provide a table of definitions |
Using the Plugin in AI Verify
Algorithm User Input(s)
| Input Field | Description | Type |
|---|---|---|
| Sensitive Feature Name | Array of sensitive features names You may select multiple sensitive features of interest, and as a guide these are usually demographic features | array |
Sample use of the widgets

More details
Algorithm input schema
{
"title": "Algorithm Plugin Input Arguments",
"description": "A schema for algorithm plugin input arguments",
"type": "object",
"required": [
"sensitive_feature"
],
"properties": {
"sensitive_feature": {
"title": "Sensitive Feature Names",
"description": "Array of Sensitive Feature Names (e.g. Gender)",
"type": "array",
"items": {
"type": "string"
},
"minItems": 1
}
}
}
Algorithm output schema
{
"title": "Algorithm Plugin Output Arguments",
"description": "A schema for algorithm plugin output arguments",
"type": "object",
"required": ["results"],
"minProperties": 1,
"properties": {
"results": {
"type": "array",
"minItems": 1,
"title": "The results Schema",
"items": {
"type": "object",
"properties": {
"mae": {
"type": "number"
},
"r2": {
"type": [
"number",
"null"
]
},
"mse": {
"type": "number"
},
"subgroup": {
"type": "string"
}
}
}
},
"sensitive_feature":{
"description":"Array of sensitive feature names",
"type":"array",
"minItems":1,
"items":{
"type":"string"
}
}
}
}